1.8 Rational world and KL invariantsThe origin (or Oworld) is the basic polyhedron 1^{*}, the 4valent graph with one vertex, the usual symbol of infinity (¥). The first, linear world (or Lworld) contains only one source link: a Hopf link 2 (2_{1}^{2} in the classical notation). We use it to derive the infinite family p of alternating KLs, with KL shadows represented by pgons with digonal edges (p ³ 2). For odd p we have the infinite series of alternating knots 3, 5, 7, ... (or 3_{1}, 5_{1}, 7_{1},...), and for even p the infinite series of alternating 2component links 2, 4, 6, ... (or 2_{1}^{2}, 4_{1}^{2}, 6_{1}^{2}, ...) (Fig. 1.43). For n > 1 the members of the linear world can be included in the next, rational world. Rational world (or Rworld) consists of rational links. In Conway notation a rational KL is any sequence of natural numbers not beginning or ending with 1, where each sequence is identified with its inverse. From this definition we can compute the number of rational KLs with n crossings. Theorem The number of rational KLs is given by the formula
that holds for every n ³ 4. Proof: Think of n as a linearly ordered set of, say, stars; then choosing a composition amounts to choosing a subset of the set of n1 spaces between the stars. E.g.,
This very simple formula, derived first by C. Ernst and D.W. Sumners (1987) in a different form, and later independently by S. Jablan, is probably one of the first combinatorial results in knot theory, giving the exact number of KLs belonging to a particular class, and not only its approximation. For n ³ 4 we can compute the first 20 numbers of that sequence. The result is the sequence: 2, 3, 6, 10, 20, 36, 72, 136, 272, 528, 1056, 1080, 4160, 8256, 16512, 32986, 65792, 131328, 262656, 524800, ... This sequence is included in OnLine Encyclopedia of Integer Sequences as the sequence A005418. The number of rational knots with n crossings (n ³ 3, sequences A018240 and A090596) is given by the formula
so we can simply derive the formula for the number of rational links with n crossings as well.
