For s = 4 and l £ 12, the polyhedral generating braids and their corresponding KLs are given in the following table, with the notation for basic polyhedra with 12 crossings according to A. Caudron (1982):   
 
l = 10  AbAbACbdCd  .2 2 1  l = 12  AbAbACbdCdCd 12J 
l = 10  AbACbCbdCd  .2 1.2 1  l = 12  AbAbACdCbCdC  11***:.2 0 
l = 10  AbACbdCbdC  .2 1:2 1 0  l = 12  AbAbCbAbdCbd 9*2 2 
l = 10  AbACdCbCdC  .2 2:2  l = 12  AbAbCbCdCbCd  8*2 1 1::2 0 
l = 12  AbAbCbdCbCdC  8*2 1 1 0:.2 0 
l = 11  AbAbACbCdCd  .2 1 1 1 1  l = 12  AbAbCbdCbdCd 9*2 1 1 
l = 11  AbAbCbCbdCd  .2 1 1.2 1 0  l = 12 AbAbCdCbCdCd  8*2 1 1 1 0 
l = 11  AbAbCbdCbdC  .2 1 1:2 1  l = 12  AbACbAdCbdCd 12L 
l = 11  AbAbCdCbCdC  .2 1 1 1:2  l = 12  AbACbCbCbdCd  8*2 1 0.2 1 0 
l = 11  AbACbACbdCd  9*2 1 0  l = 12  AbACbCbdCbCd 9*.2 1:.2 
l = 11  AbACbCdCbCd  8*2 1 0::2 0  l = 12  AbACbCbdCbdC  8*2 1 0:.2 1 0 
l = 11  AbACbCdCdCd  .2 2 1 1  l = 12  AbACbCdCbCdC  9*2 1:2 
l = 11  AbACbdCbCdC  8*2 1:.2 0  l = 12  AbACbCdCbdCd  10**:2 1 0 
l = 11  AbACdCbCdCd  8*2 2 0  l = 12  AbACbdCbCdCd  10**.2 1 
l = 12  AbACbdCbdCdC  10**:2 1 
l = 12  AbAbAbACbdCd  8*2 2 1 0  l = 12  AbCbAbCdCbCd 10**:2 0::.2 0 
l = 12  AbAbACbAbdCd  9*.2 2  l = 12  AbCbACbdCbCd  10**2 0::.2 0 

For W = (Ab)n (n ³ 2), w1 = ACbdCdCd the family of basic polyhedra beginning with 12J (AbAbACbdCdCd) is obtained, and for W = (Ab)n (n ³ 1), w1 = ACbAdCbdCd the family of basic polyhedra beginning with 12L (AbACbAdCbdCd) is obtained. 

PreviousContentsNext